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The wave function of the ground state of the H, molecule is calculated directly in its
natural expansion form, the approximate natural orbitals (NO) being expressed as linear
combinations of Slater type functions centered at the midpoint of the molecule. One obtains
ag total energy (in the equilibrium distance) — 1.168 a.u. (exact — 1.174 a.u.) which seems
to be the best one-center result for H, known so far; 969, of the binding energy is accounted
for. The accuracy of this approach is limited due to the rather slow convergency of the one-
center expansion of the orbitals. The Hartree-Fock energy calculated with the same basis
(- 1.129 a.u.) is about as much in error with respect to the exact HF energy ( — 1.136 a.u.)
as the energy of the NO expansion with respect to the experimental one.

Die Wellenfunktion fiir den Grundzustand des H,-Molekiils wird direkt in der Form ihrer
natiirlichen Entwicklung berechnet, wobei die natiirlichen Orbitale (NO) angenihert werden
als Linearkombinationen von Slater-Funktionen, die um den Schwerpunkt des Molekiils
definiert sind. Die Energie des Zustands im Gleichgewichtsabstand ergibt sich zu — 1,168 a. u.
(exakt — 1,174 a. u.), was anscheinend der beste bisher bekannte Wert fiir eine Einzentren-
entwicklung des H, ist; 969 der Bindungsenergie werden erfaf8t. Die Genauigkeit der Rech-
nung wird eingeschrinkt durch die langsame Konvergenz der Einzentrenentwicklung der
Orbitale. Die Hartree-Fock-Energie, berechnet mit der gleichen Basis ( — 1,129 a. u.), unter-
scheidet sich von der ,,exakten Hartree-Fock-Energie ( — 1,136 a. u.) um etwa den gleichen
Betrag wie diejenige der NO-Entwicklung von der experimentellen Energie.

La fonction d’onde de Iétat fondamental de la molecule H, est calculée directement dans
son developpement naturel, les orbitales naturelles (NO) approchées étant représentées
comme combinaisons linéaires des fonctions de Slater définies par rapport au centre de la
molecule. On obtient — 1,168 a.u. pour l'energie totale & la distance de Iequilibre (la
valeur exacte vaut — 1,174 a.u.) et on tient compte de 969, de I'energie de liaison. Cefte
valeur est probablement la meilleure obtenue jusqu'ici dans le cadre d'un developpement
monocentrique. La precision de ce calcul est limitée due & la convergence lente du deve-
loppement monocentrique. L’écart de Penergie Hartree-Fock calculée dans la méme base
{— 1,129 a.u.) par rapport & la valeur exacte ( — 1,136 a.u.) vaut & 0,001 a.u. prés celui de
Penergie du developpement naturel par rapport & I'energie experimentale.

1. Introduetion

Since the first quantum mechanical treatment of the H,-molecule by HrITLER
and Loxpox [74] a surprisingly large number of alternative approaches to the
same problem have been proposed (for bibliographies see [3, 25]). The aim of
only a few of these approaches was to get better wave functions than known
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before, most of them were formally rather simple and were introduced to justify
more or less new physical pictures of chemical binding.

A final point was put to these attempts by H. Suurn [26], who showed that
all the wave functions which had been proposed so far could be discussed and
interpreted from one general point of view, namely in terms of their natural ex-
pansions [75, 24]. A pertinent result of this analysis was that wave functions
which looked very different and which suggested quite different physical pictures
were shown to belong to the same type of limited natural expansions.

A spinfree two electron function for a singlet ground state in its natural ex-
pansion has the form:

YL, 2) =3 e () 7F ) (1)

Different types of H,-molecule wave-functions differ by the number of terms after
which one truncates the expansion (1) and by the accuracy by which the NOs y;
are approximated. MO functions contain one term, VB funktions two terms (the
second one accounting for “left-right” correlation) ete. In a MO-SCF function y,
is very well approximated [7, 8, 26]. The expansion (1) was first shown by LEx-
NARD-JONES et al. [15, 23] to be possible and useful before it had been proposed in
a different context by Lowpix and SHULL [24] as “natural expansion”.

Tt is somewhat unsatisfactory to start from a given numerical wave function
and analyse it afterwards in terms of natural orbitals rather than to perform
calculation and interpretation in one step by introducing the concept of natural
orbitals at the very beginning.

This is, in fact possible. Integro-differential equations which allow one to
calculate the natural orbitals (NO) for two electron functions have been derived
by one of the present authors in paper I of this series [20] (here referred to as I)
and applied successfully to two-electron atoms in papers I [27] and IIT [1].

Rather good approximations to the NOs can be obtained by resolving the
following rather simple set of integro-differential equations (after specifiying a
set of one electron basis functions) in matrix form

(HA+JY o= A sa 2)
Qi [y (H + K% 4+ KX Qs yp = Az s (3)
(k]| k)
"= g, (4)
2

As to the meaning of the notations and the iterative procedure for the solu-
tion of the system the reader is referred to the earlier paper of this series, espe-
cially T and III. Eq. (2) is the Hartree-Fock equation for the system. The cor-
relation potential, the role of which has been discussed in detail in ITI is ignored
here which amounts to ignoring the small difference between the strongly oc-
cupied NO y, and the Hartree-Fock orbital ggy. This kind of procedure has been
justified in ITI.

This work is preliminary in sofar as we did not choose the most appropriate seb
of one-electron functions — in terms of which the NOs are expanded — but rather



On the Solution of the Two-Electron Problem. IV 307

a set which facilitates the computational problem, i.e. a set of Slater type orbitals
localized at the midpoint of the molecule.

2. Pilot caleulations on Hj

In order to test the accuracy of the one-center expansion method we started
with some calculations of the ground state of the Hy -ion with this same expansion.
The results (for the equilibrium distance R = 2.0 a.u.) are collected in Tab. 1.

After we had finished these calculations the slightly better results by Jox and
HaxDLER [16] were published. Their best energy values are given for comparison.
Our best one-center energy for Hy is 0.2%, off the total electronic energy, which

Table 1. One-center caloulations jor the HY ground state (R = 2.0 a.u.)

number of type of basis functions electronic error of
basis functions (o-values in parenthesis) energy the energy
%
10 15 (1.); 25 (1.); 1s (2.); 2 (2.); 3d (2.); 44 (3.); —-1.0905 1.
5d (4.); 59 (4.); 69 (5.); Tg (5.)
18 15 (0.5, 1., 2., 3.); 25 (0.5, 1., 2., 3.); 3s (3.);
3d (2.); 44 (3.); 5d (4.); 5y (4.); 69 (5.); Tg (6.); -1.098¢ 04
7i (6.); 84 (7.); 97 (8.)
21 1s (112); 2s (1.56); 3s (2.94); 45 (3.70); 4s —1.1005 0.2
(4 0); 5s (4. 78), 3d (2.); 44 (3.); 54 (4.); g (4.3
6g (5.); Tg (6.); 73 (6.); 8i (7.); 94 (8.); 9% (8.);
101c (9.); 11m (10.); 12m (11.); 130 (12.); 140
(3.
12 s, d, ¢ orbitals; among others functions like --1.0999 0.3
73d (34.); 331 (32.)
14 four s, four d, two 7, k and m-orbitals -1.1012 0.15
exach [2] ~1.1026

The first three rows are from this work, the other two from Joy and HaxpLEr [16].

means that the error of the binding energy is about 29%,. The convergence of one-
center expansions of Hi has been discussed by Joy and HaxpLER [16, 17]. There
is evidence that the s-limit, i.e. the best energy obtained with s-functions only is
— 1.018502 a.u. (see also HAuk and Parg [12]), whereas the (s - d)-limit isnear to
—1.083676 a.u. [16, 17].

The eventually rather slow convergence of the one-center expansion (the
energy contributions of terms with large { probably go like I-* [76]) depends on
the behaviour of the wave function at the Coulomb singularities. Recently it has
been proposed to improve one-center wave functions in small regions of space [5].

3. One-center SCF-MO calculation of the H, ground state

The SCF-MO calculation using a one-center basis is straight-forward. That the
results are disappointing (see Tab. 2) compared to those for Hy is essentially due
to the fact that we were obliged to work with a smaller basis set. One can guess
by extrapolation that with a basis of about 20 one-center Slater type orbitals an
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Table 2. One-center Hartree-Fock calculations for Hy (B = 1.4 a.u.)

number of type of basis functions electronic error of

basis functions (x-values in parenthesis) energy the energy
(4 nuclear %
repulsion)

15 (1.2); 25 (1.4); 35 (2.8); 4s (4.3); 3 (2.8);
10 4d (4.3); 5d (5.7); 5g (5.7); 6g (7.1); 8i (10.0) -1.1289 03

exact [§] —1.1336

HF energy — 1.132 a.u. should be obtained. (Since the computational effort goes
about proportional to the 5th power of the dimension, calculations with a more
extended set were not feasible on the IBM 7040 16 K computer available to us.)
A similar result may be obtained with the same size of the basis, but by careful
optimization of this basis; which is, however, computer-time consuming.

4. Calculation of the natural erbitals and the natural expansion coefficients

Since the ground state of H, is totally symmetric, the natural orbitals are
adapted to the symmetry group D, ; they can therefore be classified by three
quantum numbers #, 1, p where 1 is the angular quantum number, p(= ¢, or u)
the parity with respect to inversion at the center and n labels NOs of the same
symmetry species. The natural expansion reads then

1 (o]
(1, 2) = Z { Z Cnop Xnop (1) xnop (2) +ﬁzz1 Cnap™

n=1
Urnip () 20 @)+ 25y (0 1y 211} - (6)
Each orbital is expanded in terms of the basis set
Koap (1,0, @) = E frap(r Yz (@, 9) (7)
fnlpl Z dnlpl By (r ( ) By, (r ( ) = N rk—L g—or

For the g, type NOs ypog we used 10 basis orbitals Ry, (1) Y? (9, ¢),1=0,2,4, 6
for oy — and 7, — NOs 7 and for 75y — and d; — NOs 6 basis orbitals. Natural
orbitals of type du, ¢y and those with higher angular quantum number were
ignored after their contributions had been estimated to be negligeable.

Table 3. Type of basts orbitals Bus (r) Y? (9, @) used in the NO-calculations

Nr. 1 2 3 4 5 6 7 8 9 10

k 1 2 3 4 3 4 5 5 6 8

1 0 0 0 0 2 2 2 4 4 6
« 1,2 1,4 2,8 4,3 2,8 4,3 5,7 5,7 71 10,0

Ttg, Og
Oy
k 2 3 4 4 5 6 6
! 1 1 1 3 3 3 5




On the Solution of the Two-Electron Problem. IV 309

The basis functions together with their orbital exponents « are lisbed in Tab. 3.
The parameters &k and « have been chosen such that the Ry, (v} (£ > 1) have their
maximum at 7 = 0,7 a.u., i.e. at the position of the nuclei. It was not attempted to
optimize the % and « values by repeated calculations.

The coefficients ¢y, in the expansion (6) and the total energy of our NO-
calculation (for the equilibrium distance) are collected in Tab. 4 together with
similar results obtained indirectly [7, 17] (i.e. starting from wave functions which
had been cormputed previously by a conventional method). The error in the total

Table 4. Total energies for the H, ground state and coefficients of the natural expansion

calculated indirectly
(from given wave functions)

[11] [7] [11]

This work
calculated directly

One-center expansions | Two-center expansions

-F 1.167506 1.16141 1173044 1.173128

oy 1 —.99145 —-.99068 —.99106 —.99088
2 .05263 .06094 056481 .05506
3 00927 01496 00997 01035
4 .00581 .00825 00655 .00736
5 00252 .00330 .00287
6 00145 00143

ou 1l 09752 .09934 .09947 10796
2 .00824 01027 .00975 00943
3 .00218 00228 .00250
4 00193

7w 1 .06514 06672 .06604 .06590
2 00786 .00961 00662 .00951
3 .00288 .00269
4 00131

7y 1 01145 .00838 01263
2 .00310 .00330
3 00107

6y 1 .00924 .00688 .00932
2 .00255 00219
3 .00100

energy is 0.5%, in the binding energy about 49, for our calculation. One sees,
however, that the error in the total energy is about the same as the error in the
SCF energy. The difference between the total energy and the Hartree-Fock energy
obtained in this one-center basis is 0.039 a.u. which is to be compared with the
corresponding difference between the exact values (the correlation energy)
0.040 a.u. This result suggests that our method is capable of accounting for elec-
tron correlation in a satisfactory way and that its defects reside essentially in the
unadequate SCF value.

Nevertheless our result (£ = — 1.1675 a.u.) seems to be the best result ob-
tained so far by one center calculation of the H, molecule. (The second best being
the one by HagsTrOM and SEULL [10] [E = - 1.1614 a.u.], followed by BisHoP’s
[4] [E = — 1.1605 a.u.), see also [18]).

21%
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Table 5. Energies of truncated NO expansions

NOs caleulated directly NOs caleulated indirectly
This work [71
7 a) —E [4E] —E [4E]
1 oy 1.128847 1.133467
017888 .018630
2 Ou 1.146735 1.162097
.010981 010844
3 Ty 1.157716 1.162941
.006601 007028
4 Oy 1.164317 1.169969
.000709 .000850
5 7Ty 1.165026 1170719
10 - 1.166975 1.173044
20 - 1.167506 -

n number of natural configurations in the expansion.
AE energy improvement.
@ symmetry species of the last added NO.

That the higher NOs are not too badly approximated may also be concluded
by comparing their coefficients with those obtained indirectly by HaestrOM and
SauLL [11].

Tab. 5 finally gives the energies of truncated natural expansions together
with the corresponding values obtained indirectly by Davipson and Jowgs [7].
The latter author’s values are better than ours because they involve expansions
in term of two-center orbitals. The improvements of the energy by adding sub-
sequently one more term of the natural expansion are however very similar in
both cases. Depending on the desired precision one may decide how many natural
terms one wants to take into account. With two terms on accounts for “left-
right” correlation (cf. [8]), the next important terms involve “‘in-out”-angular
correlation eto.

b. Conelusions

Tt is possible to calculate the wave function of the Iydrogen molecule directly
in its natural form and so combine calculation and interpretation from the very
beginning.

A one-center expansion is possible, but not very convenient if one wants high
accuracy, because the large dimension of the basis set necessary in this case is
difficult to handle.

The error of 0.5%, in the total energy or 49, in the binding energy obtained
here comes from the fact that we were forced to perform the Hartree-Fock cal-
culations with a basis of 10 funtcions only. Electron correlation seems to be
accounted for correctly, however.

It seems worthwhile to repeat these calculations with a better convergent set
of one-electron functions, especially in view of the application of our method to
other molecular systems. We have started calculations with two-center orbitals
and with Gaussians. Finally, H, is not the most favourable case for a one-center
expansion. We believe that for systems like CH, the direct one-center caleulation
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of natural orbitals in the geminal product approximation [22]—should give
more satisfactory results.

The problem of calculating directly natural orbitals is closely connected to the
one to minize the energy with respect to a linear combination of Slater deter-
minants [20, 13, 19, 27, 28] i.e. to the problem of caleulating “optimum multi-
configuration wave functions” by a self-consistent fleld procedure [9]. The method
outlined in this series of papers is actually a solution of this problem for two-
electron problems — and can be generalized to many-electron systems [22]. More
recent approaches to calculate many-configuration wave functions [6] follow
actually similar lines.
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