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The wave function of the ground state of the H s molecule is calculated directly in its 
natural expansion form, the approximate natural orbitals (NO) being expressed as linear 
combinations of Slater type functions centered at the midpoint of the molecule. One obtains 
as total energy (in the equilibrium distance) - 1.168 a.u. (exact - t.174 a.u.) which seems 
to be the best one-center result for H 2 known so far; 96% of the binding energy is accounted 
for. The accuracy of this approach is limited due to the rather slow convergency of the one- 
center expansion of the orbitals. The Har~ree-Fock energy calculated with the same basis 
( - t . t29 a.u.) is about as much in error with respect to the exact I-IF energy ( - 1.t36 a.u.) 
as the energy of the NO expansion with respect to the experimental one. 

Die Wellenfunktion fiir den Grundzustand des H~-Molekfils wird direkt in der Form ihrer 
natiirlichen Entwicklung berectmet, wobei die natiirlichen Orbitale (NO) angenghert werden 
als Linearkombinationen yon Slater-Funktionen, die um den Schwerpunkt des Molekiils 
definiert sind. Die Energie des Zustands im Gleichgewichtsabstand ergibt sich zu - 1,168 a. u. 
(exakt - 1,174 a. u.), was anscheinend der beste bisher bekannte Weft  fiir eine Einzentren- 
entwicklung des I-t2 ist; 96O/o der Bindungsenergie werden erfal3t. Die Genauigkeit der Rech- 
nung wird eingeschri~nkt dutch die langsame Konvergenz der Einzentreneutwicklung der 
0rbitale. Die Hartree-Fock-Energie, berechnet mit der gleiehen Basis ( - 1,t29 a. u.), unter- 
seheidet sich v o n d e r  ,,exakten" Har~ree-Fock-Energie ( - 1,t36 a. u.) um etwa den gleichen 
Begrag wie diejenige der NO-Entwicklung yon der experimentelten Energie. 

La fonction d'onde de l'6ta~ fondamental de la molecule H a est calcul~e directement dans 
son developpement naturel, les orbitales naturelles (NO) approch4es grant repr6sent6es 
comme combinaisons lin6aires des fonetions de Slater d6finies par rapport au centre de la 
molecule. On obtient - 1,t68 a.u. pour l'energie totale & la distance de l'equilibre (la 
valeur exacte vaut  - t , t74  a.u.) et on tient eompte de 96~o de l'energie de liaison. Cette 
valeur est probablement la meilleure obtenue jusqu'ici dans le cadre d 'un developpement 
monoeentrique. La precision de ee calcul est limit6e due ~ la convergence lente du deve- 
loppement monoeentrique. L'gcar~ de l'energie Hargree-Fock ealculge duns la mgme base 
( - 1,t29 a.u.) par rappor~ ~ la valeur exacte ( - 1,t36 a.u.) vaut ~ 0,001 a.u. pros eelui de 
l'energie du developpement naturel par rapport ~ l'energie experimentale. 

1. Introduction 

Since the  first q u a n t u m  m e c h a n i c a l  t r e a t m e n t  o f  t he  H~-moleeule  b y  I~EITLE:~ 

and  LONDON [14] a surpr i s ing ly  large n u m b e r  o f  a l t e r n a t i v e  app roaches  to  t h e  
same  p r o b l e m  h a v e  been  p roposed  (for b ib l iographies  see [3, 25]). The  a i m  of  

on ly  a few of  these  app roaches  was to  ge t  b e t t e r  w a v e  func t ions  t h a n  k n o w n  
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before, most of them were formally rather simple and were introduced to justify 
more or less new physical pictures of chemical binding. 

A final point was put  to these attempts by H. S~uLL [26], who showed that  
all the wave functions which had been proposed so far could be discussed and 
interpreted from one general point of view, namely in terms of their natural ex- 
pansions [15, 24]. A pertinent result of this analysis was that  wave functions 
which looked very different and which suggested quite different physical pictures 
were shown to belong to the same type of limited natural expansions. 

A spinfree two electron function for a singlet ground state in its natural ex- 
pansion has the form: 

~(i, 2) = ~ c~ z~ (1) 7f  (2) (l) 
i 

Different types of H2-molecule wave-functions differ by the number of terms after 
which one truncates the expansion (i) and by the accuracy by which the NOs %~ 
are approximated. MO functions contain one term, VB funktions two terms (the 
second one accounting for "left-right" correlation) etc. In a MO-SCF function Z1 
is very well approximated [7, 8, 26]. The expansion (l) was first shown by LE~- 
~A~D-Jo~ns et al. [15, 23] to be possible and useful before it had been proposed in 
a different context by L(SWDI~ and SHULL [2~] as "natural expansion". 

I t  is somewhat unsatisfactory to start from a given numerical wave function 
and analyse it afterwards in terms of natural orbitMs rather than to perform 
calculation and interpretation in one step by introducing the concept of natural 
orbitals at the very beginning. 

This is, in fact possible. Integro-differential equations which allow one to 
calculate the natural orbitals (NO) for two electron functions have been derived 
by one of the present authors in paper I of this series [20] (here referred to as I) 
and applied successfully to two-electron atoms in papers I I  [21] and I I I  [1]. 

Rather good approximations to the NOs can be obtained by resolving the 
following rather simple set of integro-differentiM equations (after speeifiying a 
set of one electron basis functions) in matrix form 

(H + j1) )/1 = ~11 ~/x (2) 

Qi [n~ (H + K~) + K 1] Q~ Z~ = ~ Zi (3) 

(~  1 ~)  (4) 
n~ E~ - E~ 

2ci Hii + ~c~ (i/~ I/~i) = #c~. (5) 
k 

As to the meaning of the notations and the iterative procedure for the solu- 
tion of the system the reader is referred to the earlier paper of this series, espe- 
eiMly I and III .  Eq. (2) is the Itartree-Foek equation for the system. The cor- 
relation potential, the role of which has been discussed in detail in I I I  is ignored 
here which amounts to ignoring the small difference between the strongly oc- 
cupied ~ 0  Z1 and the Hartree-Fock orbital ~ F .  This kind of procedure has been 
justified in III .  

This work is preliminary in solar as we did not choose the most appropriate set 
of one-electron functions ~ in terms of which the NOs are expanded ~ but rather 
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a set which facilitates the computat ional  problem, i.e. a set of Slater type  orbitals 
localized at the midpoint  of  the molecule. 

2. Pilot calculations on H~ 

I n  order to test the accuracy of the one-center expansion method we s tar ted 
with some calculations of  the ground state of the I-I+-ion with this same expansion. 
The results (for the equilibrium distance R = 2.0 a.u.) are collected in Tab. i.  

After  we had finished these calculations the slightly better  results by  Jo~r and 
ttA)rDL~R [16] were pubhshed. Their best energy values are given for comparison. 
Our best one-center energy for I t  + is 0.2% off the total  electronic energy, which 

Table 9. One-center calculations/or the H+~ ground state (J~ = 2.0 a.u.) 

number  of  type  of  basis  funct ions  electronic error of  
basis  funct ions (c~-values in  parenthesis)  energy the energy 

% 

t0 is (1.); 2s (t0; ~s (2.); 2s (2.); 3d (2.); 4d (3.); -1.0905 i. 
5d (4.) ; 59 (4.); 6g (5.); 7g (5.) 

~18 9s (0.5, ~l., 2., 3.); 2s (0.5, 9,  2 ,  3.); 3s (3.); 
3g(2.);4d(3.);5d(4.);5g(4.);6g(5.);7g(6.); -9.0984 0.4 
7i (6.); 8i (7.); 9i (8.) 

21 is (tA2); 2s (1.56); 3s (2.94); 4s (3.70); 4s -1.t005 0.2 
(4.0); 5s (4.78); 3d (2.); 4d (3.) ; 5d (4.); 5g (4.) ; 
6g (5.); 7g (6.); 7i (6.); 8i (7.); 9i (8.); 9k (8.); 
lOlc (9.); l lm (10.); 12m (9t.); 13o (12.); t4o 
(~3.) 

12 

14 

s, d, i orbitals; among others functions like -9.0999 0.3 
73d (34.); 33i (32.) 
four s, four d, two i, k and m-orbitals -1.1012 0.15 

exact [2] -1.t026 
The first ~hree rows are from this work, the other two from JoY and I-IANDLE]g [16]. 

means tha t  the error of the binding energy is about  2%. The convergence of  one- 
center expansions of  H + has been discussed by  JoY and I-IANDL~a [16, 17]. There 
is evidence tha t  the s-limit, i.e. the best energy obtained with s-functions only is 
- f .0i8502 a.u. (see also tIAUK and PAisa [12]), whereas the (s + d)-limit is near to 
- l .083676a. .u .  [16, 17]. 

The eventually ra ther  slow convergence of  the one-center expansion (the 
energy contributions of  terms with large 1 probably  go like l -~ [16]) depends on 
the behaviour of  the wave function at the Coulomb singularities. Recent ly  it has 
been proposed to  improve one-center wave functions in small regions of space [5]. 

3 . 0ne -c e n t e r  SCF-M0 calculation of the II~ ground state 

The SCF-MO calculation using a one-center basis is straight-forward. That  the 
results are disappointing (see Tab. 2) compared to those for H + is essentially due 
to the fact tha t  we were obhged to  work with a smaller basis set. One can guess 
by extrapolation that with a basis of about 20 one-center Slater type orbitals an 
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Table 2. One-center Hartree-Foclc calculations/or I-I 2 ( R  = 1.~ a.u.) 

n u m b e r  of  type of  basis  funct ions electronic error of  
basis  funct ions  (~-values in  parenthesis)  eitergy the energy 

( +  nucIear  % 
repulsion) 

Is (1.2); 2s (1.4); 3s (2.8); 4s (4.3); 3d (2.8); 
10 4d (4.3); 5d (5.7); 5g (5.7); 6g (7.1); 8i (I0.0) -1.t289 0.3 

exae~ [8] - 1.1336 

I-IF energy - t.132 a.u. should be obtained. (Since the computat ional  effort goes 
about  proport ional  to the 5 th power of  the dimension, calculations with a more 
extended set were not  feasible on the IBM 7040 16 K computer  available to us.) 
A similar result m a y  be obtained with the same size of  the basis, but  by  careful 
opt imizat ion of  this basis ; which is, however, computer-t ime consuming. 

4. Calculation of the natural  orbitals and the natural  expansion coefficients 

Since the ground state of  H~ is total ly  symmetric,  the natural  orbitals are 
adapted  to the symmet ry  group D ~ h ;  they  can therefore be classified by  three 
quan tum numbers  n, 2, p where 2 is the angular quan tum number,  p( = g, or u) 
the par i ty  with respect to  inversion at the center and ~ labels NOs of the same 
symmet ry  species. The natural  expansion reads then 

~o(l, 2) = ~ Cno~ Z~o~ (l) Z,~0p (2) + ~ ~=1 
~=I p U 

(l) * * t 

% 

x~p (2) + z~p  (l) Z ~  (2)] . (6) 

Each  orbital is expanded in terms of the basis set 
oo 

/ ~  (r) = ~ ,t(k) R ~  (r); R ~  (r) N r~-i  e - ~  ' * n @ l  = 
k 

For  the ae-type NOs Znoa we used 10 basis orbitals Rk~ (r) Y~ (~, q)), / = 0, 2, 4, 6 
for au -- and 7~u -- N 0 s  7 and for 7~ a - and d a -- NOs 6 basis orbitals. Natura l  
orbitals of type  (~u, q~a and those with higher angular quan tum number  were 
ignored after their contributions had been est imated to be negligeable. 

Table 3. Type o/basis orbitals .R~ (r) yo (v a, ~o) used in the NO-calculations 

Nr. 1 2 3 4 5 6 7 8 9 t0 

k t 2 3 4 3 4 5 5 6 8 
l 0 0 0 0 2 2 2 4 4 6 
a 1,2 1,4 2,8 4,3 2,8 4,3 5,7 5,7 7,1 10,0 

.:rgg~ O"g- 

{Yg 

/c 2 3 4 4 5 6 6 
l t 1 t 3 3 3 5 

1,4 2,8 4,3 4,3 5,7 7,1 7,t 
flu, ~u  
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The basis functions together with their  orbital  exponents  ~ are listed in  Tab. 3. 

The parameters  k and  c~ have been chosen such tha t  the R ~  (r) (k > t) have the i r  
m a x i m u m  at  r = 0,7 a.u., i.e. at  the posit ion of the nueM. I t  was not  a t t empted  to 
optimize the k and  cr values by  repeated calculations. 

The coefficients cn~v in  the expansion (6) and  the tota l  energy of our NO- 
calculation (for the equi l ibr ium distance) are collected in  Tab. 4 together  with 
similar results obta ined indirect ly [7, 11] (i.e. s tar t ing from wave functions which 

had been computed previously by  a convent ional  method). The error in  the to ta l  

Table 4. Total energies for the H a ground state and coe/ficients of the natural expansion 

This work 
calculated directly 

calculated indirectly 
(from given wave functions) 

[7] [11] [111 

expansions ] Two-center expansions One-center 
I 

- E  t.t67506 

~g l  -.99145 
2 .05263 
3 .00927 
4 .00581 
5 .00252 
6 .00145 

~ t  .09752 
2 .00824 
3 .00218 
4 .00193 

~ I .06514 
2 .00786 
3 .00288 
4 .0013t 

~g t .01145 
2 .00310 
3 .00107 

dg t .00924 
2 .00255 
3 .00100 

t.t6141 1.173044 

-.99068 -.99106 
.06094 .05481 
.01496 .00997 
.00825 .00655 
.00330 
.00143 

.09934 .09947 

.01027 .00975 

.00228 

1.173128 

-.99088 
.05506 
.01035 
.00736 
.00287 

.10796 

.00943 

.00250 

.06672 .06604 .06590 

.00961 .00662 .00951 
.00269 

.00838 .01263 
.00330 

.00688 .00932 
.00219 

energy is 0.5%, in  the binding energy about  4% for our calculation. One sees, 
however, t ha t  the error in  the tota l  energy is about  the same as the error in  the 
SCF energy. The difference between the total  energy and the I-Iartree-Fock energy 
obta ined in  this one-center basis is 0.039 a.u. which is to be compared with the  
corresponding difference between the exact values (the correlation energy) 
0.040 a.u. This result  suggests tha t  our method is capable of account ing for elec- 
t ron  correlation in  a satisfactory way and tha t  its defects reside essentially i n  the 
unadequate  SCF value. 

Nevertheless our result (E = -- t . t675 a.u.) seems to be the best result  ob- 
ta ined  so far by  one center calculation of the I-I 2 molecule. (The second best being 
the one by  ItAGST~6~r and Sgu~L [10] [E = -- t.1614 a.u.], followed by  BlSgOp'S 
[4] [E = -- t . t605 a.u.), see also [18]). 

21" 
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Table 5. Energies o~ truncated NO expansions 

NOs calculated directly NOs calculated indirectly 
This work [7] 

n a) --E lAB] --E [AN] 

t ag 1.128847 1.133467 
.017888 

2 ~ 1.t46735 1.152097 
.010981 

3 ~. t.157716 1.162941 
.006601 

4 as 1.t64317 1.169969 
.000709 

5 sg t.t65026 1.170719 
10 - 1.166975 1.173044 
20 - 1.167506 

n number of natural configurations in the expansion. 
AE energy improvement. 
a symmetry species of the last added NO. 

.018630 

.010844 

.007028 

.000850 

That  the higher NOs are not too badly approximated m a y  also be concluded 
by  comparing their coefficients with those obtained indirectly by  HAGST~6~ and 
SRULL [11]. 

Tab. 5 finally gives the energies of t runca ted  natural  expansions together  
with the corresponding values obtained indirectly by  DAVlDSON and Jol~Es [7]. 
The latter author ' s  values are better  than  ours because they  involve expansions 
in term of two-center  orbitals. The improvements  of  the energy by  adding sub- 
sequently one more term of the natural  expansion are however very  similar in 
both  cases. Depending on the desired precision one m a y  decide how m a n y  natural  
terms one wants  to take into account. Wi th  two terms on accounts for "left- 
r ight"  correlation (eft [8]), the next  impor tan t  te rms involve " in-out"-angular  
correlation etc. 

5 .  C o n c l u s i o n s  

I t  is possible to  calculate the wave function of  the Hydrogen  molecule directly 
in its natural  form and so combine calculation and interpretat ion from the very  
beginning. 

A one-center expansion is possible, but  not  very  convenient ff one wants high 
accuracy,  because the large dimension of  the basis set necessary in this case is 
difficult to  handle. 

The error of  0.5% in the total  energy or 4% in the binding energy obtained 
here comes from the fact tha t  we were forced to perform the Har t ree-Foek cal- 
culations with a basis of  i0 funtcions only. Electron correlation seems to be 
accounted for correctly, however. 

I t  seems worthwhile to repeat these calculations with a bet ter  convergent set 
of one-electron functions, especially in view of  the application of  our method  to 
other molecular systems. We have s tar ted calculations with two-center orbitals 
and with Gaussians. Finally, tt~ is not  the most  favourable ease for a one-center 
expansion. We believe tha t  for systems like CH 4 the direct one-center calculation 
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of  na tu r a l  orbi ta ls  in the  geminal  p roduc t  app rox ima t ion  [22] - - shou ld  give 

more  sa t i s fac tory  results .  
The p rob lem of  calculat ing d i rec t ly  na tu r a l  orbi ta ls  is closely connected to  the  

one to minize the  energy with  respect  to  a l inear  combina t ion  of  S la ter  deter-  
m inan t s  [20, 13, 19, 27, 28] i.e. to  the  p rob lem of  calculat ing "op t in lum mul t i -  
configurat ion wave funct ions"  b y  a self-consistent field procedure  [9]. The m e t h o d  
out l ined  in this  series of  papers  is ac tua l ly  a solut ion of  th is  p rob lem for two-  
e lect ron problems - -  and  can be general ized to  many-e lec t ron  sys tems [22]. More 
recent  approaches  to calculate many-conf igura t ion  wave  funct ions [6] follow 
ac tua l ly  s imilar  fines. 
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performed at the IBM 7040/16 K in G6ttingen. 
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